prediction of monthly precipitation based on large-scale climate signals using intelligent models and multiple linear regression (case study: semnan synoptic station)

نویسندگان

مجید محمدی

دانشجوی دکتری، گروه مهندسی آب و سازه‏های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان حجت کرمی

استادیار، گروه مهندسی آب و سازه‏های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان سعید فرزین

استادیار، گروه مهندسی آب و سازه‏های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان علیرضا فرخی

دانشجوی دکتری، گروه مهندسی آب و سازه‏های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان

چکیده

large-scale climatic signals including ocean-atmosphere interactions, are the main factors influencing the earth’s climatic oscillations and are the most important indices in predicting of climate variables. in this research, precipitation in the next month was predicted by applying artificial neural network (ann), neuro-fuzzy network (nfn), and multiple linear regression (mlr) in semnan synoptic station. for this purpose, monthly series of precipitation of semnan synoptic station and signals of large-scale climate signals were used during a period of 45 years (1966–2010). from 540 monthly time series, the first 80% was used for training and the other 20% for testing. performance of the models was compared by using correlation coefficient (r), mean absolute error (mae), and root mean square error (rmse) criteria. results of the validation step showed that the obtained correlation coefficients (0.829, 0.793 and 0.767) are related to ann, anfis and mlr models. based on the results of this study, the next month’s precipitation of semnan synoptic station could be predicted by ann, nfn and mlr models, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Rainfall under HadCM3 and CanESM2 Climate Change Models using Statistical Downscaling Model (Case Study: Tabriz Synoptic Station)

Global climate change as a main factor affecting all ecological components, has been attended by researchers all over the world in the recent years. In this regard for simulating the rainfall, National Centers for Environmental Prediction (NCEP) data, HadCM3 data under A2 and B2 scenarios, CanESM2 data under RCP2.6, RCP4.5 and RCP8.5 scenarios were utilized. This research was performed by adopt...

متن کامل

Application of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation

Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...

متن کامل

Comparative Study Among Different Time Series Models for Monthly Rainfall Forecasting in Shiraz Synoptic Station, Iran

In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to Feb...

متن کامل

Prediction of daily precipitation of Sardasht Station using lazy algorithms and tree models

Due to the heterogeneous distribution of precipitation, predicting its occurrence is one of the primary and basic solutions to prevent possible disasters and damages caused by them. Considering the high amount of precipitation in Sardasht County, the people of this city turning to agriculture in recent years and not using classification models in the studied station, it is necessary to predict ...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
اکو هیدرولوژی

جلد ۴، شماره ۱، صفحات ۲۰۱-۲۱۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023